Abstract

Porcine circovirus (PCV) type 2 (PCV2), an immunosuppression pathogen, is often found to increase the risk of other pathogenic infections. Yet the relative immune mechanisms determining the susceptibility of PCV2-infected animals remain unclear. In this study, we confirmed that PCV2 infection suppressed IL-12p40 expression and host Th1 immune response, leading to a weakened pathogenic clearance upon porcine reproductive respiratory syndrome virus (PRRSV) or Haemophilus parasuis infection. PCV2 infection suppressed pathogens, LPS/IFN-γ, or LPS/R848-induced IL-12p40 expression in porcine alveolar macrophages. PCV2 capsid (Cap) was the major component to suppress IL-12p40 induction by LPS/IFN-γ, LPS/R848, PRRSV, or H. parasuis Either wild-type PCV2 or mutants PCV2-replicase 1 and PCV type 1-Cap2, which contained PCV2 Cap, significantly decreased IL-12p40 levels and increased the replication of PRRSV and H. parasuis in the lung tissues relative to mock or PCV type 1 infection. gC1qR, a Cap binding protein, was not involved in IL-12p40 induction but mediated the inhibitory effect of PCV2 Cap on IL-12p40 induction. PCV2 also activated PI3K/Akt1 and p38 MAPK signalings to inhibit IL-12p40 expression via inhibition of NF-κB p65 binding to il12B promoter and upregulation of miR-23a and miR-29b. Knockdown of Akt1 and p38 MAPK downregulated miR-23a and miR-29b and increased IL-12p40 expression. Inhibition of miR-23a and miR-29b attenuated the inhibitory effect of PCV2 on IL-12p40 induction, resulting in an increased IL-12p40 expression and Th1 cell population and reduced susceptibility to PRRSV or H. parasuis Taken together, these results demonstrate that PCV2 infection suppresses IL-12p40 expression to lower host Th1 immunity to increase the risk of other pathogenic infection via gC1qR-mediated PI3K/Akt1 and p38 MAPK signaling activation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.