Abstract

There is a continuous search for shelf-ready small-caliber vascular prostheses with satisfactory early and late results. Biodegradable scaffolds, repopulated by recipient's cells regenerating a neovessel, can be a suitable option for adult and pediatric, urgent and elective cardiovascular procedures. This was a short-term experimental assessment of a new biodegradable vascular prosthesis for arterial replacement in the pig. Eleven pigs underwent bilateral carotid artery replacement with biodegradable electrospun poly-ε-caprolactone (PCL) nanofiber prostheses (internal diameter, 4 mm; length, 5 cm); or expanded polytetrafluoroethylene (ePTFE) prostheses as control. Perioperative anticoagulation was achieved with intravenous heparin (double baseline activated clotting time). Postoperatively, until conclusion of the study at 1 month, animals received aspirin and clopidogrel daily. Transit time flow was measured intraoperatively and at sacrifice. Doppler ultrasound (1 and 4 weeks) and a selective carotid angiography (4 weeks) were performed to assess patency. All explanted grafts were analyzed by histology, morphometry, and scanning electron microscopy in order to study graft-host interaction. Surgical handling and hemostasis of the new prostheses were excellent. Patency rate was 78% (7/9) for PCL grafts, compared with 67% (4/6) for ePTFE grafts. Transit time flow and Doppler ultrasound showed no significant changes in flow and velocity or diameter over time in both groups. Both prostheses showed no detectable in vivo compliance as compared with native carotid artery. Percent neoendothelialization was 86% for PCL and 58% for ePTFE grafts (P = .008). Neointima formation was equal in both grafts. More adventitial infiltration of macrophages, myofibroblasts, and capillaries was seen in PCL grafts with a milder foreign-body reaction when compared with ePTFE implants. Both grafts showed similar endoluminal thrombus formation. Biodegradable, electrospun PCL grafts showed good surgical and mechanical properties, no aneurysm formation, and similar short-term patency compared with ePTFE grafts. Rapid endothelialization and cell ingrowth confirms favorable PCL graft-recipient biological interaction. Despite good early results, long-term follow-up is required before clinical application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.