Abstract
The mechanisms of sc insulin absorption are not understood, and models for interpreting in vivo data cannot be developed without gross simplification. To overcome this difficulty we developed a new approach which makes use of deconvolution analysis and does not require any model of the sc tissue. In five normal subjects and seven insulin-dependent diabetic (IDDM) patients endogenous insulin secretion was suppressed by means of a hypoglycemic glucose clamp procedure (approximately 2.8 mmol/L) sustained by a continuous insulin infusion (approximately 4 pmol/min.kg). A bolus injection of insulin (5.4 nmol) was administered iv, and plasma insulin concentrations were measured frequently for 2 h to assess iv insulin kinetics. Insulin then was injected sc in the abdominal region, and plasma insulin concentrations were measured for 8 h. Each subject was studied twice, with porcine and semisynthetic human insulin (Actrapid, Novo). The rate of insulin absorption was reconstructed by deconvolution from the plasma concentrations and iv insulin kinetic data. Linearity of the iv insulin kinetics, essential for deconvolution analysis, was confirmed by a dose-response study in the range of the measured concentrations (150-1800 pmol/L). In most instances, a two-compartment model was adequate to describe the iv response. The mean plasma insulin clearance rates were 15.5 +/- 1.9 (+/- SD) mL/min.kg (porcine) and 17.2 +/- 6.0 (human) in normal subjects and 20.7 +/- 8.8 (porcine) and 20.9 +/- 9.1 (human) in the IDDM patients. The rate of appearance of human insulin from sc tissue was faster than that of porcine insulin in both normal and IDDM subjects, but no significant differences were found in bioavailability, which was 55 +/- 12% (+/- SD; porcine) and 61 +/- 34% (human) in the normal subjects, and 84 +/- 28% (porcine) and 86 +/- 23% (human) in the IDDM patients. The rate of absorption and bioavailability were higher in the IDDM patients than in the normal subjects, a difference possibly related to increased sc blood flow in the IDDM patients. No differences were found with regard to glucose requirement values, normalized to plasma insulin concentrations, in agreement with the finding that the bioavailability of the two insulin species was similar.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of clinical endocrinology and metabolism
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.