Abstract

We investigate molecular mechanisms of poration in lipid bilayers due to shock-induced collapse of nanobubbles. Our multimillion-atom molecular dynamics simulations reveal dynamics of nanobubble shrinkage and collapse, leading to the formation and penetration of nanojets into lipid bilayers. The nanojet impact generates shear flow of water on bilayer leaflets and pressure gradients across them, which transiently enhance the bilayer permeability by creating nanopores through which water molecules translocate rapidly across the bilayer. Effects of nanobubble size and temperature on the porosity of lipid bilayers are examined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call