Abstract
We identified mortality-, age-, and sex-associated differences in relation to reference intervals (RIs) for laboratory tests in population-wide data from nearly 2 million hospital patients in Denmark and comprising more than 300 million measurements. A low-parameter mathematical wave-based modification method was developed to adjust for dietary and environment influences during the year. The resulting mathematical fit allowed for improved association rates between re-classified abnormal laboratory tests, patient diagnoses, and mortality. The study highlights the need for seasonally modified RIs and presents an approach that has the potential to reduce over- and underdiagnosis, affecting both physician-patient interactions and electronic health record research as a whole.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.