Abstract

This paper focuses on a class of linear Hawkes processes with general immigrants. These are counting processes with shot noise intensity, including self-excited and externally excited patterns. For such processes, we introduce the concept of age pyramid which evolves according to immigration and births. The virtue if this approach that combines an intensity process definition and a branching representation is that the population age pyramid keeps track of all past events. This is used to compute new distribution properties for a class of linear Hawkes processes with general immigrants which generalize the popular exponential fertility function. The pathwise construction of the Hawkes process and its underlying population is also given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.