Abstract

To assess extinction risk for Oregon coastal coho salmon, Oncorhynchus kisutch, we developed a life cycle model based on habitat quality of individual stream reaches estimated from survey data. Reach-specific smolt output was a function of spawner abundance, demographic stochasticity, genetic effects, and density- and habitat-driven survival rates. After natural mortality and ocean harvest, spawners returned to their natal reaches. Populations in reaches with poor habitat became extinct during periods of low marine survival. With favorable marine survival, high productivity reaches served as sources for recolonization of lower quality reaches through straying of spawners. Consequently, both population size and distribution expanded and contracted through time. Within a reach, populations lost resilience at low numbers when demographic risk factors became more important than density-dependent compensation. Population viability was modeled for three coastal basins having good, moderate, and poor habitat. With constant habitat conditions, extinction risk in 99 years was negligible in basins with good and moderate habitat and 5-10% in the basin with poor habitat. Reductions in habitat quality up to 60% in 99 years resulted in reduced coho salmon populations in all basins and significantly increased extinction risk in the basin with poor habitat.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call