Abstract

Roost microclimate plays an important role in the survival, growth and reproduction in microbats. Entering torpor is one of the main energy saving mechanisms commonly used by microbats. The use of torpor is affected by roost microclimate and seasonally differs between the two sexes in relation to their reproductive condition. Consequently, thermal properties of male and female roosts should differ. To test this hypothesis, we compared temperature parameters of two anthropogenic day roosts of Daubenton’s bats with a different structure of the population inhabiting them. In accordance with our predictions, the roost occupied by a male-dominated colony was colder and more fluctuant than the maternity roost with a female-dominated population. However, using of the two roosts changed during the season in response to changing energetic demands of the two sexes. While males were almost absent in the warmer maternity roost during pregnancy and lactation, they appeared in this roost during the post-lactation when mating starts. In contrast, females did not use the colder (male) roost until the time of weaning of juveniles, i.e., the time when their thermoregulatory needs change and they may benefit from using colder roost. Our study provides the evidence that the same roost may be used by individuals of different sex and reproductive state in different periods of the year. Generalizations about roost selection without knowledge of temporal variation in roost use and microclimatic conditions should be taken with caution. Anthropogenic roosts may be advantageous to Daubenton’s bats as these can provide a variety of suitable microclimates and/or more space for roosting than tree cavities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call