Abstract

Naegleria sp. is a free living amoeba belonging to the Heterolobosea class. Over 40 species of Naegleria were identified and recovered worldwide in different habitats such as swimming pools, freshwater lakes, soil or dust. Among them, N. fowleri, is a human pathogen responsible for primary amoeboic meningoencephalitis (PAM). Around 300 cases were reported in 40 years worldwide but PAM is a fatal disease of the central nervous system with only 5% survival of infected patients. Since both pathogenic and non pathogenic species were encountered in the environment, detection and dispersal mode are crucial points in the fight against this pathogenic agent. Previous studies on identification and genotyping of N. fowleri strains were focused on RAPD analysis and on ITS sequencing and identified 5 variants: euro-american, south pacific, widespread, cattenom and chooz. Microsatellites are powerful markers in population genetics with broad spectrum of applications (such as paternity test, fingerprinting, genetic mapping or genetic structure analysis). They are characterized by a high degree of length polymorphism. The aim of this study was to genotype N. fowleri strains using microsatellites markers in order to track this population and to better understand its evolution. Six microsatellite loci and 47 strains from different geographical origins were used for this analysis. The microsatellite markers revealed a level of discrimination higher than any other marker used until now, enabling the identification of seven genetic groups, included in the five main genetic groups based on the previous RAPD and ITS analyses. This analysis also allowed us to go further in identifying private alleles highlighting intra-group variability. A better identification of the N. fowleri isolates could be done with this type of analysis and could allow a better tracking of the clinical and environmental N. fowleri strains.

Highlights

  • ObjectivesThe aim of this study was to genotype N. fowleri strains using microsatellites markers in order to track this population and to better understand its evolution

  • The free living-amoeboflagellate Naegleria fowleri is the causative agent of primary amoebic meningoencephalitis (PAM) in humans, a rare but rapidly fatal disease of the central nervousPLOS ONE | DOI:10.1371/journal.pone.0152434 April 1, 2016N. fowleri Analysis with Microsatellite Markers

  • We describe and examine six microsatellites in the different variants of N. fowleri which were initially identified by RAPD and internal transcribed spacers (ITS)

Read more

Summary

Objectives

The aim of this study was to genotype N. fowleri strains using microsatellites markers in order to track this population and to better understand its evolution. Our objective was to improve the understanding of population structure of this pathogenic species, to enhance the typing for a better tracking, and to better understand their dispersal

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.