Abstract

The green turtle (Chelonia mydas) nesting population at Tortuguero, Costa Rica, is the largest nesting aggregation in the Atlantic, by at least an order of magnitude. Previous mitochondrial DNA (mtDNA) surveys based on limited sampling (n = 41) indicated low genetic diversity and low gene flow with other Caribbean nesting colonies. Furthermore, a survey of nuclear DNA diversity invoked the possibility of substructure within the Tortuguero rookery. To evaluate these characteristics, mtDNA control region sequences were determined for green turtles nesting at Tortuguero in 2001 (n = 157) and 2002 (n = 235). The increased sample revealed three additional haplotypes; five haplotypes are now known for Tortuguero female green turtles. Analyses of molecular variance indicated that there was no significant spatial population structure along the 30-km nesting beach. In addition, no temporal population structure was detected either between the two nesting seasons or within the nesting season. As a result of the larger sample size and additional haplotypes, estimates of genetic separation among Caribbean nesting colonies have changed and the concordance of phylogenetic and phylogeographic patterns reported in the past for green turtles in the Greater Caribbean has weakened. The five haplotypes from Tortuguero represent 36% of the haplotypes identified in green turtle nesting aggregations in the Greater Caribbean and 17% of the haplotypes known to occur in nesting or foraging aggregations in the Greater Caribbean. Haplotype diversity (0.16) and nucleotide diversity (0.0034) for the Tortuguero population are substantially lower than those for the combined rookeries in the Greater Caribbean (0.44 and 0.0078, respectively). Although comprehensive evaluation of regional genetic diversity requires nuclear DNA data, our study indicates that conserving genetic diversity in Caribbean green turtles will require careful management of the smaller rookeries in addition to the Tortuguero rookery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.