Abstract

Ayu Plecoglossus altivelis altivelis is a valuable osmeroid species for inland fishery in Japan. It is classified into two ecological forms of amphidromous migrating between rivers and sea and landlocked migrating between rivers and lakes or dam reservoirs. The number of dams and their reservoirs has remarkably increased in the twenty-first century under climate change, because of their respective roles in hydropower generation with negligible carbon emissions and in flood control. Dam reservoirs therefore become increasingly important as inland nursery grounds of ayu. In this study, we investigated the reproduction status of landlocked ayu migrating in the Haidzuka Dam reservoir and the Tabusa River in western Japan by molecular phylogenetic analysis based on population structure and demographic history for year cohort dynamics. A total of 849 individuals were collected monthly from October 2018 to September 2021 according to an annual life cycle of ayu. Nucleotide sequences of the partial mitochondrial DNA control region yielded 31 haplotypes, consisting of 4 shared haplotypes among the 2019, 2020 and 2021 cohorts and 27 unique haplotypes. The overall haplotype diversity and nucleotide diversity were calculated to be relatively low at 0.3503 ± 0.0206 and 0.0077 ± 0.0045, respectively, suggesting a founder event by dominant haplotypes. Star-shaped radiational haplotypes from dominant shared haplotypes on the median-joining network likely support a founder event. Although pairwise ФST values were determined to be very low among the year cohorts, only the 2019 cohort was found to have a significant difference from the 2020 and 2021 cohorts, for both of which Tajima's D values were also statistically significant. For the overall population, multimodal mismatch distribution and negative Tajima's D and Fu's Fs values in the neutrality test suggested population expansion or population subdivision. The native riverine population in the Tabusa River suffered habitat fragmentation and population bottleneck from dam construction, and therefore severe founder effect remained behind the artificially landlocked population with a low level of genetic diversity in the Haidzuka Dam reservoir.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call