Abstract

We present results of our pulsar population synthesis of ordinary isolated and millisecond pulsars in the Galactic plane. Over the past several years, a program has been developed to simulate pulsar birth, evolution and emission using Monte Carlo techniques. We have added to the program the capability to simulate millisecond pulsars, which are old, recycled pulsars with extremely short periods. We model the spatial distribution of the simulated pulsars by assuming that they start with a random kick velocity and then evolve through the Galactic potential. We use a polar cap/slot gap model for $\gamma$-ray emission from both millisecond and ordinary pulsars. From our studies of radio pulsars that have clearly identifiable core and cone components, in which we fit the polarization sweep as well as the pulse profiles in order to constrain the viewing geometry, we develop a model describing the ratio of radio core-to-cone peak fluxes. In this model, short period pulsars are more cone-dominated than in our previous studies. We present the preliminary results of our recent study and the implications for observing these pulsars with GLAST and AGILE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call