Abstract
We consider the influence of population size on the accuracy of diffusion quantum Monte Carlo simulations that employ descendant weighting or forward walking techniques to compute expectation values of observables that do not commute with the Hamiltonian. We show that for a simple model system, the d-dimensional isotropic harmonic oscillator, the population size must increase rapidly with d in order to ensure that the simulations produce accurate results. When the population size is too small, expectation values computed using descendant-weighted diffusion quantum Monte Carlo simulations exhibit significant systematic biases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.