Abstract
Regression analysis is a powerful tool for the study of changes in a dependent variable as a function of an independent regressor variable, and in particular it is applicable to the study of anatomical growth and shape change. When the underlying process can be modeled by parameters in a Euclidean space, classical regression techniques are applicable and have been studied extensively. However, recent work suggests that attempts to describe anatomical shapes using flat Euclidean spaces undermines our ability to represent natural biological variability. In this paper we develop a method for regression analysis of general, manifold-valued data. Specifically, we extend Nadaraya-Watson kernel regression by recasting the regression problem in terms of Frechet expectation. Although this method is quite general, our driving problem is the study anatomical shape change as a function of age from random design image data. We demonstrate our method by analyzing shape change in the brain from a random design dataset of MR images of 89 healthy adults ranging in age from 22 to 79 years. To study the small scale changes in anatomy, we use the infinite dimensional manifold of diffeomorphic transformations, with an associated metric. We regress a representative anatomical shape, as a function of age, from this population.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.