Abstract

Temsirolimus is an inhibitor of the mammalian target of rapamycin (mTOR). Pharmacokinetic (PK) characterization of temsirolimus in children is limited and there is no paediatric temsirolimus population PK model available. The objective of this study was to simultaneously characterize the PK of temsirolimus and its metabolite sirolimus in paediatric patients with recurrent solid or central nervous system tumours and to develop a population PK model. The PK data for temsirolimus and sirolimus were collected as a part of a Children's Oncology Group phase I clinical trial in paediatric patients with recurrent solid tumours. Serial blood concentrations obtained from 19 patients participating in the PK portion of the study were used for the analysis. Population PK analysis was performed by nonlinear mixed effect modelling using NONMEM. A three-compartment model with zero-order infusion was found to best describe temsirolimus PK. Allometrically scaled body weight was included in the model to account for body size differences. Temsirolimus dose was identified as a significant covariate on clearance. A sirolimus metabolite formation model was developed and integrated with the temsirolimus model. A two-compartment structure model adequately described the sirolimus data. This study is the first to describe a population PK model of temsirolimus combined with sirolimus formation and disposition in paediatric patients. The developed model will facilitate PK model-based dose individualization of temsirolimus and the design of future clinical studies in children.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.