Abstract

Sertraline pharmacokinetics is poorly understood and highly variable due to large between-subject variability with inconsistent reports for oral bioavailability. The study objective was to characterize sertraline pharmacokinetics by developing and validating a sertraline population pharmacokinetic (PK) model in healthy subjects using published clinical PK data. We carried a systematic literature search in PubMed in October 2015 and identified 27 pharmacokinetic studies of sertraline conducted in healthy adult subjects and reported in the English language. Sixty mean plasma concentration-time profiles made of 748 plasma concentrations following IV, single, and multiple oral doses ranging from 5 to 400mg were extracted and analyzed for dose proportionality by a log-linear model and fitted to a 2-compartment pharmacokinetic model in NONMEM using a model-based meta-analysis (MBMA) approach. After a single oral dose, sertraline Cmax and AUC∞ increased with dose proportionally between 50 and 200mg, and bioavailability increased nonlinearly with dose from 5 to 50mg and plateaued afterwards while Tmax and t1/2 did not change with dose. Following multiple oral doses, Cmax and AUC∞ increased proportionally with dose across the entire dose range (5-200mg) while bioavailability, Tmax, and t1/2 remained constant with dose. Sertraline absorption was time-dependent and best described by a sigmoidal Emax function of time after dose. Study findings indicate that sertraline PK is linear in healthy adult subjects at doses ≥ 50mg, and exposures were nonlinear only after single oral doses < 50mg likely due to reduced bioavailability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call