Abstract

Oxcarbazepine (OXC) is an antiepileptic drug metabolised to active 10-monohydroxy derivative (MHD) following oral administration. There are no MHD population pharmacokinetic (PPK) models that describe the influence of genetic factors on MHD pharmacokinetics (PK). We developed a PPK model of MHD to investigate gene polymorphism of enzymes associated with MHD PK in Chinese paediatric epilepsy patients and evaluated its utility for dose individualisation. Data were prospectively collected from 141 paediatric epilepsy patients (aged ≤ 14years) who received OXC therapy at the First Affiliated Hospital of Fujian Medical University. The trough concentrations at steady state were determined by enzyme-multiplied immunoassay. Patients were genotyped for four single nucleotide polymorphisms (UGT2B7 802T>C, UGT1A9 I399C>T, ABCB1 3435C>T, and ABCB2 1249G>A). Patient gender, age, body weight (BW), hepatorenal function, and co-administrations were recorded. The PPK model was developed using nonlinear mixed-effects modelling software. The clinical performance of the final model was evaluated by including additional paediatric patients (n = 20) in the validation group. Oral clearance of MHD was significantly influenced by BW. The MHD PK was unrelated to the other covariates, such as the four single nucleotide polymorphisms and co-administration with new-generation antiepileptic drugs. The final BW-dependent exponent model showed the best fit with our data and predicted the trough concentrations in the validation group more accurately than the basic model. A new dosing strategy combining the dosage guideline and Bayesian method is proposed to individualise OXC regimens. A PPK model was established to estimate individual MHD clearance in paediatric patients taking OXC to develop individualised OXC dosing regimens for Chinese paediatric epilepsy patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call