Abstract

This study aimed to identify physiological and pharmacogenomic covariates and develop a population pharmacokinetic model of high-dose methotrexate (HD-MTX) in Chinese paediatric patients with acute lymphoblastic leukaemia (ALL) and malignant lymphoma. A total of 731 MTX courses and 1658 MTX plasm concentrations from 205 paediatric patients with ALL and malignant lymphoma were analysing using a non-linear mixed-effects model technique. 47 SNPs in 16 MTX-related genes were genotyped and screened as covariates. A PPK model was established to determine the influence of covariates, such as body surface area (BSA), age, laboratory test value, and SNPs on the pharmacokinetic process of HD-MTX. Two-compartmental model with allometric scaling using BSA could nicely characterise the in vivo behaviour of HD-MTX. After accounting for body size, rs17004785 and rs4148416 were the covariates that influence MTX clearance (CL). The PPK model obtained was: CL = 9.33 * (BSA/1.73)0.75 * e0.13*rs17004785 * e0.39*rs4148416 * eηCL, Vc = 24.98 * (BSA/1.73) * eηvc, Q = 0.18 * (BSA/1.73)0.75 * eηQ and Vp = 4.70 * (BSA/1.73) * eηvp. The established model combined with the Bayesian approach could estimate individual pharmacokinetic parameters and optimise personalised HD-MTX therapy for paediatric patients with ALL and malignant lymphoma.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.