Abstract

Isavuconazole (ISA) is a triazole antifungal with activity against yeasts and molds. We established a population pharmacokinetic (pop PK) model of intravenous (i.v.) ISA to identify covariates that affect pharmacokinetics, using plasma samples from solid-organ transplant (SOT) recipients receiving peritransplant prophylaxis. Samples (n = 471) from 79 SOT recipients were utilized for pop PK analysis using nonlinear mixed-effect modeling NONMEM software. ISA (i.v.) PK parameters were best described by a two-compartment model. Significant covariates were sex on clearance (∼53% higher in women than men) and body mass index on peripheral volume of distribution. Incorporating drug exposure into Monte Carlo simulations, we demonstrated that standard ISA dosing is likely to attain the PK-pharmacodynamic (PD) target (area under the concentration curve/MIC ratio [AUC/MIC]) for treatment effectiveness against almost all infections caused by Aspergillus fumigatus isolates exhibiting MICs of ≤0.5 μg/ml (modal MIC). In contrast, standard dosing is predicted to attain PK-PD targets against <20% of infections caused by Candida albicans and Candida glabrata isolates exhibiting MICs of ≥0.016 and ≥0.5 μg/ml, respectively (modal MICs). These data are consistent with our SOT program's experience with ISA breakthrough infections, where 3 of 4 were caused by C. glabrata for which probabilities of PK-PD target attainment (PTA) were only 70% and 0% for isolates with MICs of 0.25 μg/ml and 1 μg/ml. Our findings provide important new insights into how ISA use might be optimized following SOT.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.