Abstract
BackgroundThe World Health Organization endorses the use of artemisinin-based combination therapy for treatment of acute uncomplicated falciparum malaria in the second and third trimesters of pregnancy. However, the effects of pregnancy on the pharmacokinetics of artemisinin derivatives, such as artesunate (AS), are poorly understood. In this analysis, the population pharmacokinetics of oral AS, and its active metabolite dihydroartemisinin (DHA), were studied in pregnant and non-pregnant women at the Kingasani Maternity Clinic in the DRC.MethodsData were obtained from 26 pregnant women in the second (22 - 26 weeks) or the third (32 - 36 weeks) trimester of pregnancy and from 25 non-pregnant female controls. All subjects received 200 mg AS. Plasma AS and DHA were measured using a validated LC-MS method. Estimates for pharmacokinetic and variability parameters were obtained through nonlinear mixed effects modelling.ResultsA simultaneous parent-metabolite model was developed consisting of mixed zero-order, lagged first-order absorption of AS, a one-compartment model for AS, and a one-compartment model for DHA. Complete conversion of AS to DHA was assumed. The model displayed satisfactory goodness-of-fit, stability, and predictive ability. Apparent clearance (CL/F) and volume of distribution (V/F) estimates, with 95% bootstrap confidence intervals, were as follows: 195 L (139-285 L) for AS V/F, 895 L/h (788-1045 L/h) for AS CL/F, 91.4 L (78.5-109 L) for DHA V/F, and 64.0 L/h (55.1-75.2 L/h) for DHA CL/F. The effect of pregnancy on DHA CL/F was determined to be significant, with a pregnancy-associated increase in DHA CL/F of 42.3% (19.7 - 72.3%).ConclusionsIn this analysis, pharmacokinetic modelling suggests that pregnant women have accelerated DHA clearance compared to non-pregnant women receiving orally administered AS. These findings, in conjunction with a previous non-compartmental analysis of the modelled data, provide further evidence that higher AS doses would be required to maintain similar DHA levels in pregnant women as achieved in non-pregnant controls.
Highlights
The World Health Organization endorses the use of artemisinin-based combination therapy for treatment of acute uncomplicated falciparum malaria in the second and third trimesters of pregnancy
In this analysis, pharmacokinetic modelling suggests that pregnant women have accelerated DHA clearance compared to non-pregnant women receiving orally administered AS
Plasmodium falciparum parasite density was assessed though Giemsa staining of thick and thin blood films; slide-positive infections were later PCRconfirmed using DNA extracted from dried blood spots [8]
Summary
The World Health Organization endorses the use of artemisinin-based combination therapy for treatment of acute uncomplicated falciparum malaria in the second and third trimesters of pregnancy. The effects of pregnancy on the pharmacokinetics of artemisinin derivatives, such as artesunate (AS), are poorly understood In this analysis, the population pharmacokinetics of oral AS, and its active metabolite dihydroartemisinin (DHA), were studied in pregnant and non-pregnant women at the Kingasani Maternity Clinic in the DRC. The World Health Organization (WHO) recommends artemisinin-based combination therapy (ACT) as a firstline treatment for acute, uncomplicated falciparum malaria in the second and third trimesters of pregnancy [3]. Two were conducted by McGready and colleagues, who assessed the pharmacokinetics of artesunate (AS) and artemether in Thai women in the second and third trimesters of pregnancy with acute uncomplicated falciparum malaria [5,6] Their findings suggest that in pregnant women, exposure to dihydroartemisinin (DHA), the common active metabolite of AS and artemether, is substantially lower than exposure reported in previous studies with non-pregnant adults. In a recent non-compartmental pharmacokinetic study, the clearance of DHA was determined to be faster in pregnant women than non-pregnant controls, but not than in the same women three months postpartum [7]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.