Abstract

This study aimed to characterize apixaban pharmacokinetics (PKs) and its variability in a real-world clinical setting of hospitalized patients using a population PK (PopPK) approach. Model-based simulations helped to identify factors that affect apixaban exposure and their clinical significance. A classic stepwise strategy was applied to determine the best PopPK model for describing typical apixaban PKs in hospitalized patients from the OptimAT study (n = 100) and evaluating the associated variability and influencing factors. Apixaban exposure under specific conditions was assessed using the final model. A two-compartment model with first-order absorption and elimination best described the data. The developed PopPK model revealed a major role of renal function and a minor role of P-glycoprotein phenotypic (P-gp) activity in explaining apixaban variability. The final model indicated that a patient with stage 4 chronic kidney disease (creatinine clearance [CLcr] = 15-29 mL/min) would have a 45% higher drug exposure than a patient with normal renal function (CLcr >90 mL/min), with a further 12% increase if the patient was also a poor metabolizer of P-gp. A high interindividual variability in apixaban PKs was observed in a real-life setting, which was partially explained by renal function and by P-gp phenotypic activity. Target apixaban concentrations are reached under standard dosage regimens, but overexposure can rapidly occur in the presence of cumulative factors warranting the development of a predictive tool for tailoring apixaban exposure and its clinical utility in at-risk patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call