Abstract
BackgroundThe World Health Organization (WHO) recommends combinations of an artemisinin derivative plus an anti-malarial drug of longer half-life as treatment options for uncomplicated Plasmodium falciparum infections. In Africa, artesunate–mefloquine (ASMQ) is an infrequently used artemisinin-based combination therapy (ACT) because of perceived poor tolerance to mefloquine. However, the WHO has recommended reconsideration of the use of ASMQ in Africa. In this large clinical study, the pharmacokinetics (PK) of a fixed dose combination of ASMQ was investigated in an African paediatric population to support dosing recommendations used in Southeast Asia and South America.MethodsAmong the 472 paediatric patients aged 6–59 months from six African centres included in the large clinical trial, a subset of 50 Kenyan children underwent intensive sampling to develop AS, its metabolite dihydroartemisinin (DHA) and MQ PK models. The final MQ PK model was validated using sparse data collected in the remaining participants (NONMEM®). The doses were one or two tablets containing 25/55 mg AS/MQ administered once a day for 3 days according to patients’ age. A sensitive LC–MS/MS method was used to quantify AS, DHA and MQ concentrations in plasma. An attempt was made to investigate the relationship between the absence/presence of malaria recrudescence and MQ area under the curve (AUC) using logistic regression.ResultsAS/DHA concentration–time profiles were best described using a one-compartment model for both compounds with irreversible AS conversion into DHA. AS/DHA PK were characterized by a significant degree of variability. Body weight affected DHA PK parameters. MQ PK was characterized by a two-compartment model and a large degree of variability. Allometric scaling of MQ clearances and volumes of distribution was used to depict the relationship between MQ PK and body weight. No association was found between the model predicted AUC and appearance of recrudescence.ConclusionsThe population pharmacokinetic models developed for both AS/DHA and MQ showed a large variability in drug exposure in the investigated African paediatric population. The largest contributor to this variability was body weight, which is accommodated for by the ASMQ fixed dose combination (FDC) dosing recommendation. Besides body weight considerations, there is no indication that the dosage should be modified in children with malaria compared to adults.Trial registration Pan African Clinical Trials Registry PACTR201202000278282 registration date 2011/02/16
Highlights
The World Health Organization (WHO) recommends combinations of an artemisinin derivative plus an anti-malarial drug of longer half-life as treatment options for uncomplicated Plasmodium falciparum infections
There is no indication that the dosage should be modified in children with malaria compared to adults
Population pharmacokinetic analysis A total of 216 MQ, 117 AS and 134 dihydroarte‐ misinin (DHA) concentrations were available for the 48 Kenyan patients selected for the pharmacokinetic model development
Summary
The World Health Organization (WHO) recommends combinations of an artemisinin derivative plus an anti-malarial drug of longer half-life as treatment options for uncomplicated Plasmodium falciparum infections. The World Health Organization (WHO) estimates a significant 18% reduction in the incidence of malaria along with a considerable 28% decrease in the malaria mortality rate between 2010 and 2017 [1] Despite this substantial progress, the disease still caused an estimated 435,000 deaths worldwide, mostly in Africa (93%) and in children under 5 years of age (61%) [1]. Artemisinin-based combination therapy (ACT) is the first-line treatment for uncomplicated Plasmodium falciparum infection, the predominant cause of malaria in Africa, recommended by the WHO since 2001 [2]. These combinations involve a rapidly eliminated and fast-acting artemisinin derivative together with a much more slowly eliminated drug that kills the remaining parasites. The WHO has recommended reconsideration of the use of ASMQ in Africa in order to increase the number of artemisinin-based combinations available, with the consequent reduction of the risk of developing drug resistance [4]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.