Abstract

IONIS-GCGRRx (ISIS 449884) is an antisense oligonucleotide inhibitor of the glucagon receptor (GCGR). The objective of this study was to evaluate the pharmacokinetics (PK) and pharmacodynamics (PD) of IONIS-GCGRRx via population-based modeling. The observed data were obtained from a Phase 1 (50, 100, 200, 300 and 400mg) single- and multiple-dose study in healthy volunteers and a Phase 2 (100 and 200mg) multiple-dose study in T2DM patients. The PK of IONIS GCGRRx was characterized by two primary systemic compartments and three absorption transit compartments with elimination out of the peripheral compartment. The fasting plasma glucose (FPG) PD was an indirect-response model (inhibition of FPG production) linked to the HbA1c PD model which was a semi-mechanistic model capturing RBC maturation dynamics. Stepwise covariate modeling was performed to identify relevant covariates. In the PK model, bodyweight (BW) was the only significant covariate influencing tissue clearance, tissue volume and plasma volume. Plots of parameter-covariate relations indicate the influence of BW is clinically relevant. In the PD models, baseline HbA1c had a positive correlation with I max and baseline FPG had a negative correlation with the glycosylation rate (k gl ). Simulations from the final model showed that the doses tested in the Phase 2 were at or close to the maximum of the dose-response curve and that dose reduction down to 50mg resulted in minimal effect to efficacy. The model was useful in supporting the decision for dose reduction in a subsequent trial.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.