Abstract

The aims of this study are (i) to develop a population pharmacokinetic/pharmacodynamic model of daptomycin in patients with normal and impaired renal function, and (ii) to establish the optimal dose recommendation of daptomycin in clinical practice. Several structural PK models including linear and non-linear binding kinetics were evaluated. Monte Carlo simulations were conducted with a fixed combination of creatinine clearance (30–90 mL/min/1.73 m2) and body weight (50–100 kg). The final dataset included 46 patients and 157 daptomycin observations. A two-compartment model with first-order peripheral distribution and elimination kinetics assuming non-linear protein-binding kinetics was selected. The bactericidal effect for Gram+ strains with MIC ≤ 0.5 mg/L could be achieved with 5–12 mg/kg daily daptomycin based on body weight and renal function. The administration of 10–17 mg/kg q48 h daptomycin allows to achieve bactericidal effect for Gram+ strains with MIC ≤ 1 mg/L. Four PK samples were selected as the optimal sampling strategy for an accurate AUC estimation. A quantitative framework has served to characterize the non-linear binding kinetics of daptomycin in patients with normal and impaired renal function. The impact of different dosing regimens on the efficacy and safety outcomes of daptomycin treatment based on the unbound exposure of daptomycin and individual patient characteristics has been evaluated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call