Abstract

Clopidogrel is an antiplatelet drug used to reduce the risk of acute coronary syndrome and stroke. It is converted by CYP2C19 to its active metabolite; therefore, poor metabolizers (PMs) of CYP2C19 exhibit diminished antiplatelet effects. Herein, we conducted a proof-of-concept study for using population pharmacokinetic-pharmacodynamic (PK-PD) modeling to recommend a personalized clopidogrel dosing regimen for individuals with varying CYP2C19 phenotypes and baseline P2Y12 reaction unit (PRU) levels. Data from a prospective phase I clinical trial involving 36 healthy male participants were used to develop the population PK-PD model predicting the concentrations of clopidogrel, clopidogrel H4, and clopidogrel carboxylic acid, and linking clopidogrel H4 concentrations to changes in PRU levels. A two-compartment model effectively described the PKs of both clopidogrel and clopidogrel carboxylic acid, and a one-compartment model of those of clopidogrel H4. The CYP2C19 phenotype was identified as a significant covariate influencing the metabolic conversion of the parent drug to its metabolites. A PD submodel of clopidogrel H4 that stimulated the fractional turnover rate of PRU levels showed the best performance. Monte Carlo simulations suggested that PMs require three to four times higher doses than extensive metabolizers to reach the target PRU level. Individuals within the top 20th percentile of baseline PRU levels were shown to require 2.5-3 times higher doses than those in the bottom 20th percentile. We successfully developed a population PK-PD model for clopidogrel considering the impact of CYP2C19 phenotypes and baseline PRU levels. Further studies are necessary to confirm actual dosing recommendations for clopidogrel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call