Abstract

Lecanemab is a humanized immunoglobulin G1 monoclonal antibody that selectively binds to soluble Aβ aggregate species, while demonstrating low affinity for Aβ monomer. This article describes the population pharmacokinetic (PK) and PK/pharmacodynamic (PD) analyses for amyloid plaques, as measured using positron emission tomography (PET), and biomarkers of amyloid pathology as evidenced by Aβ42/40 ratio and plasma p-tau181 following i.v. administration of lecanemab in subjects with early Alzheimer's disease. Lecanemab PKs were well-characterized with a two-compartment model with first-order elimination. Final PK model contained covariate effects of anti-drug antibody positive status, sex, body weight, and albumin on clearance. The time course of amyloid PET standard uptake ratio (SUVr), plasma Aβ42/40 ratio, and p-tau181 were described using indirect response models with lecanemab exposure as a maximum effect function stimulating the reduction of SUVr, and as a linear function increasing Aβ42/40 ratio and decreasing p-tau181 formation rates. PK/PD simulations show that 10mg/kg biweekly dosing results in larger and faster decrease in SUVr and p-tau181 and increase in Aβ42/40 ratio as compared to 10mg/kg monthly dose. Furthermore, the PK/PD simulations showed that after treatment discontinuation the brain amyloid re-accumulation to baseline levels is slow with a recovery half-life of ~4 years, whereas plasma Aβ42/40 ratio and p-tau181 return to baseline levels faster than amyloid. Given the relationship between changes in amyloid PET SUVr and soluble biomarkers, the developed PK/PD models can be used to inform lecanemab dose regimens in future clinical studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call