Abstract
Cotadutide is a dual glucagon-like peptide-1 (GLP-1) and glucagon (GCG) receptor agonist peptide. The objective of this analysis was to develop a population pharmacokinetic (popPK) model of cotadutide, and to identify any potential effect on the PK from intrinsic and extrinsic covariates. The popPK analysis utilized a non-linear mixed-effects modeling approach using the data from 10 clinical studies in different participant categories following once-daily subcutaneous dose administration ranging from 20 to 600μg. Additionally, the covariates affecting cotadutide exposure were quantified, and the model performance was evaluated through the prediction-corrected visual predictive checks. A one-compartment model with first-order absorption and elimination adequately described the data as confirmed via visual predictive check plots and parameter plausibility. The mean values for cotadutide apparent clearance (CL/F), apparent volume of distribution (V/F), absorption rate constant (Ka), and half-life were 1.05 L/h, 20.0 L, 0.38 h-1, and 13.3 hours, respectively. Covariate modeling identified body weight, alanine transaminase, albumin, anti-drug antibody (ADA) titer values, formulation strength and injection device, and participant categories as significant covariates on PK parameters, where ADAs have been identified to decrease cotadutide clearance. The model demonstrated that a 150-kg participant was estimated to have 30% lower for both AUC and Cmax and a 66 kg participant was estimated to have 35% higher for both AUC and Cmax relative to a reference individual with a median weight of 96 kg. A popPK model was developed for cotadutide with cotadutide clinical data, and the impact of the statistically significant covariates identified was not considered clinically meaningful. The popPK model will be used to evaluate exposure-response relationships for cotadutide clinical data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.