Abstract

Population pharmacokinetic analysis of lithium during therapeutic drug monitoring and drug compliance assessment was performed in 54 patients and 246 plasma concentrations levels were included in this study. Patients received several treatment cycles (1–9) and one plasma concentration measurement for each patient was obtained always before starting next cycle (pre-dose) at steady state. Data were analysed using the population approach with NONMEM version 7.2. Lithium measurements were described using a two-compartment model (CL/F=0.41Lh−1, V1/F=15.3L, Q/F=0.61Lh−1, and V2/F = 15.8L) and the most significant covariate on lithium CL was found to be creatinine clearance (reference model). Lithium compliance was analysed using inter-occasion variability or Markovian features (previous lithium measurement as ordered categorical covariate) on bioavailability parameter. Markov-type model predicted the lithium compliance in the next cycle with higher success rate (79.8%) compared to IOV model (65.2%) and reference model (43.2%). This model becomes an efficient tool, not only being able to adequately describe the observed outcome, but also to predict the individual drug compliance in the next cycle. Therefore, Bipolar disorder patients can be classified regarding their probability to become extensive or poor compliers in the next cycle and then, individual probabilities lower than 0.5 highlight the need of intensive monitoring, as well as other pharmaceutical care measurements that might be applied to enhance drug compliance for a better and safer lithium treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.