Abstract

While the effects of incubation environment on embryonic development and offspring traits have been extensively studied in oviparous vertebrates, studies into how genetic inheritance (population origin), maternal effects, and incubation environment interact to produce varying phenotypes, are rare. To elucidate the interactive role of those three factors during incubation in shaping offspring phenotypes through hydric conditions, we conducted a fully factorial experiment [arid and semiarid populations × maternal dry and wet treatments (MDT and MWT) × embryonic dry and wet treatments (EDT and EWT)] with a desert-dwelling lacertid lizard (Eremias argus). Female lizards in dry conditions produced larger clutch sizes but smaller eggs. The incubation period and hatching success were significantly affected by embryonic but not by maternal moisture treatments. Eggs in the EDT hatched later than those in the EWT in both arid and semiarid populations. Hatching success was lower in EDT than in EWT in the semiarid population, but not in the arid population. Hatchlings from the EDT had a slower post-hatch increase in body mass than those from the EWT. EDT would decrease the survival rates of hatchlings in the semiarid population only. In addition, structural equation models revealed that population had a stronger effect on embryonic and offspring survival than maternal and embryonic moisture. Our study demonstrates locally adaptive strategies of drought resistance at multiple life-history stages in lizard populations from diverse hydric habitats and highlights the importance of genetic factors in determining embryonic drought resistance in oviparous lizards.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call