Abstract
One-dimensional logistic population models with quasi-constant-yield harvest rates are studied under the assumptions that a population inhabits a patch of dimensionless width and no members of the population can survive outside of the patch. The essential problem is to determine the size of the patch and the ranges of the harvesting rate functions under which the population survives or becomes extinct. This is the first paper which discusses such models with the Dirichlet boundary conditions and can tell the exact quantity of harvest rates of the species without having the population die out. The methodology is to establish new results on the existence of positive solutions of semi-positone Hammerstein integral equations using the fixed point index theory for compact maps defined on cones, and apply the new results to tackle the essential problem. It is expected that the established analytical results have broad applications in management of sustainable ecological systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.