Abstract

Abstract Spider webs are iconic examples of extended phenotypes that are remarkably plastic across different environments. Orb webs are not only effective traps for capturing prey, but can also provide information to potential mates and, in some cases, potential predators and prey through silk-based chemicals. As with regular phenotypic traits, variability in the properties of spider webs is thought to be mediated by a combination of genetic and environmental effects. Here, we examined variation in several key features of the webs of the orb-weaving spider Argiope keyserlingi across five geographically disparate populations. We documented variation in web architecture and chemical properties of webs collected directly from the field. We then probed the potential for the underlying environmental driver of local insect abundance to explain this variation, by analysing the properties of orb webs constructed by the spiders from these different populations, but under identical laboratory conditions. We found no evidence of variation across populations in the architecture of webs constructed in the laboratory, despite the large geographic distances. Nonetheless, we discovered between population variation in the composition of chemicals found on the surface of silk and in the taxonomic distribution of available prey. Furthermore, there was a positive correlation between the quantity of nitrogenous compounds in web silks and female body condition. When combined, these findings suggest that environmental mechanisms can drive variation in web traits across spider populations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call