Abstract

We find that a suppression of the collapse and revival of population inversion occurs in response to insertion of Gaussian quenched disorder in atom-cavity interaction strength in the Jaynes-Cummings model. The character of suppression can be significantly different in the presence of non-Gaussian disorder, which we uncover by studying the cases when the disorder is uniform, discrete, and Cauchy-Lorentz. Interestingly, the quenched averaged atom-photon entanglement keeps displaying nontrivial oscillations even after the population inversion has been suppressed. Subsequently, we show that disorder in atom-cavity interactions helps to avoid sudden death of atom-atom entanglement in the double Jaynes-Cummings model. We identify the minimal disorder strengths required to eliminate the possibility of sudden death. We also investigate the response of entanglement sudden death in the disordered double Jaynes-Cummings model in the presence of atom-atom coupling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.