Abstract

We formulate a fractional master equationin continuous time with random transition probabilities across the population of random walkers such that the effective underlying random walk exhibits ensemble self-reinforcement. The population heterogeneity generates a random walk with conditional transition probabilities that increase with the number of steps taken previously (self-reinforcement). Through this, we establish the connection between random walks with a heterogeneous ensemble and those with strong memory where the transition probability depends on the entire history of steps. We find the ensemble-averaged solution of the fractional master equationthrough subordination involving the fractional Poisson process counting the number of steps at a given time and the underlying discrete random walk with self-reinforcement. We also find the exact solution for the variance which exhibits superdiffusion even as the fractional exponent tends to 1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.