Abstract

BackgroundThe adaptive mechanisms of agricultural pests are the key to understanding the evolution of the pests and to developing new control strategies. However, there are few studies on the genetic basis of adaptations of agricultural pests. The turnip moth, Agrotis segetum (Lepidoptera: Noctuidae) is an important underground pest that affects a wide range of host plants and has a strong capacity to adapt to new environments. It is thus a good model for studying the adaptive evolution of pest species.ResultsWe assembled a high-quality reference genome of A. segetum using PacBio reads. Then, we constructed a variation map of A. segetum by resequencing 98 individuals collected from six natural populations in China. The analysis of the population structure showed that all individuals were divided into four well-differentiated populations, corresponding to their geographical distribution. Selective sweep analysis and environmental association studies showed that candidate genes associated with local adaptation were functionally correlated with detoxification metabolism and glucose metabolism.ConclusionsOur study of A. segetum has provided insights into the genetic mechanisms of local adaptation and evolution; it has also produced genetic resources for developing new pest management strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call