Abstract

Blackleg disease, a major threat to Brassica crops worldwide, is primarily caused by the pathogen Leptosphaeria biglobosa. Investigating the genetic variation of L. biglobosa is crucial for managing and preventing the disease in Brassica napus. To date, there is scarce genomic variation information available for populations of L. biglobosa in China. In this study, 73 L. biglobosa strains of canola stalks were collected from 12 provinces in China and subjected to re-sequencing. The 73 assemblies averaged 1340 contigs, 72,123 bp N50, and 30.17 Mb in size. In total, 9409 core orthogroups and 867 accessory orthogroups were identified. A total of 727,724 mutation loci were identified, including 695,230 SNPs and 32,494 indels. Principal component analysis (PCA) and population structure analysis showed that these strains could be divided into seven subgroups. The strains in most provinces were clustered into a single subgroup, suggesting a strong influence of the geographic environment on strain variation. The average nucleotide diversity (θπ) of all strains was 1.03 × 10-3, indicating important genetic diversity among strains from different regions of China. This study provides valuable resources for future comparative genomics, gives new insights into the population evolution of L. biglobosa, and supports the development of strategies for managing blackleg disease in canola.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.