Abstract

The German wasp (Vespula germanica) is a highly successful invader on a global scale. These wasps were first observed in the Western Cape region in South Africa in 1972, and they have the potential to expand their range and cause significant damage to the native biodiversity. Our study used nuclear (DNA microsatellites) and mitochondrial DNA (mtDNA) from 42 wasp colonies to analyse the population genetics of V. germanica in their invaded South African range. We sequenced three mitochondrial genes; cytochrome c oxidase I, cytochrome b and cytochrome c oxidase II. We found six mtDNA haplotypes present in South Africa. Although only a single fertilized queen is sufficient for the establishment of a wasp nest, the probability of a single introduced queen to successfully establish a nest and a population is very small. If multiple queens were introduced at the same time, the probability for more than one haplotype being transferred to the new population increases. Therefore, the true number of queen introductions occurred in South Africa can be inferred to be between two and six. We examined nine microsatellite loci and found weak-to-no genetic sub-structuring, likely due to high dispersal rates. We concluded that German wasps in South Africa maintain a homogenous population with movement of individuals between localities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.