Abstract

Background Wuchereria bancrofti (Wb) is the primary causative agent of lymphatic filariasis (LF). Our studies of LF in Papua New Guinea (PNG) have shown that it is possible to reduce the prevalence of Wb in humans and mosquitoes through mass drug administration (MDA; diethylcarbamazine with/without ivermectin). While MDAs in the Dreikikir region through 1998 significantly reduced prevalence of Wb infection, parasites continue to be transmitted in the area.MethodsWe sequenced the Wb mitochondrial Cytochrome Oxidase 1 (CO1) gene from 16 people infected with Wb. Patients were selected from 7 villages encompassing both high and moderate annual transmission potentials (ATP). We collected genetic data with the objectives to (i) document contemporary levels of genetic diversity and (ii) distinguish between populations of parasites and hosts across the study area.Principle FindingsWe discovered 109 unique haplotypes currently segregating in the Wb parasite population, with one common haplotype present in 15 out of 16 infections. We found that parasite diversity was similar among people residing within the same village and clustered within transmission zones. For example, in the high transmission area, diversity tended to be more similar between neighboring villages, while in the moderate transmission area, diversity tended to be less similar.ConclusionsIn the Dreikikir region of PNG there are currently high levels of genetic diversity in populations of Wb. High levels of genetic diversity may complicate future MDAs in this region and the presence of dominant haplotypes will require adjustments to current elimination strategies.

Highlights

  • Lymphatic-dwelling nematodes that cause damage to the lymphatic system contribute to significant permanent and long-term disability in the world, second only to mental illness [1]

  • The primary approach to lymphatic filariasis (LF) elimination has been through mass drug administration (MDA), which serves to interrupt transmission by treating the transmission stage of the infection

  • The primary approach to LF elimination has been through mass drug administration (MDA), which serves to interrupt transmission by killing the microfilaria required to continue the parasite life cycle through mosquito transmission

Read more

Summary

Introduction

Lymphatic-dwelling nematodes that cause damage to the lymphatic system (lymphatic filariasis—LF) contribute to significant permanent and long-term disability in the world, second only to mental illness [1]. In 2000, the World Health Organization (WHO) initiated the Global Program to Eliminate Lymphatic Filariasis (GPELF) with the goal to eradicate LF by 2020. The primary approach to LF elimination has been through mass drug administration (MDA), which serves to interrupt transmission by treating the transmission stage of the infection (microfilaria; MF). Complete MDA programs have been developed in more than 50 of the LF-endemic countries with 13 of these reaching the goals set forth by the GPELF in all or part of the country [2]. Our studies of LF in Papua New Guinea (PNG) have shown that it is possible to reduce the prevalence of Wb in humans and mosquitoes through mass drug administration (MDA; diethylcarbamazine with/without ivermectin). While MDAs in the Dreikikir region through 1998 significantly reduced prevalence of Wb infection, parasites continue to be transmitted in the area

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call