Abstract

Discrete population genetics models with unequal (skewed) fertilities are considered, with an emphasis on skewed versions of Cannings models, conditional branching process models in the spirit of Karlin and McGregor, and compound Poisson models. Three particular classes of models with skewed fertilities are investigated, the Wright–Fisher model, the Dirichlet model, and the Kimura model. For each class the asymptotic behavior as the total population size N tends to infinity is investigated for power law fertilities and for geometric fertilities. This class of models can exhibit a rich variety of sub-linear or even constant effective population sizes. Therefore, the models are not necessarily in the domain of attraction of the Kingman coalescent. For a substantial range of the parameters, discrete-time coalescent processes with simultaneous multiple collisions arise in the limit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.