Abstract

Little genetic information is available to evaluate hypotheses concerning the parameters that affect population genetic structure in primate taxa that exhibit interspecific variation in social systems, such as squirrel monkeys (Saimiri). Here, we used genetic data to assess dispersal patterns, kin structure, and preferential association with same-sex kin in a wild population of Saimiri sciureus macrodon. We also analyzed behavioral data to assess whether individuals that maintain shorter interindividual distances show increased insect foraging success. If there was greater male than female dispersal, then we expected mean pairwise relatedness, F ST values, and intragroup mean corrected assignment indices to be greater among adult females than among adult males. We also expected matrices of pairwise affinity indices (PAIs) for “association” (time spent ≤5 m) and “proximity” (time spent ≤10 m) among female dyads to positively correlate with a matrix of female pairwise relatedness. Not only did we find support for female philopatry, but we also found significant positive relationships between the relatedness matrix and each of the PAI matrices: females were more likely to be associated with (and proximal to) close female relatives than more distant relatives or unrelated individuals. Foraging analyses revealed that females had higher insect capture rates than males, and this sex difference may be related to a smaller mean interindividual distance among closely related female group members. Our result shows how estimates of genetic relatedness are useful for testing predictions regarding the evolution of sex-biased dispersal patterns, as well as potential relationships between kin-biased social behaviors and foraging success.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call