Abstract
Sharpbelly Hemiculter leucisculus (Basilewski, 1855) is a small, widespread, and native cyprinid fish with prominent habitat suitability and high invasive potential and is becoming the dominant species in freshwater ecosystems under intensified environmental disturbances. But how H. leucisculus acclimates to extremely heterogeneous environments remains unclear. In current study, the genetic structure of H. leucisculus was analyzed using Bayesian phylogenetic inference, haplotype network, and STRUCTURE base on cytb gene across 18 populations spanning 20 degrees of latitude and 18 degrees of longitude in China. The morphological diversification of body size and shape for H. leucisculus along the climate gradient was studied. The results showed that the 18 H. leucisculus populations were divided into 3 clusters: one cluster mainly from Huanghe River Basin, another cluster mainly from Yangzi River Basin, and H cluster containing Hainan and Beihai populations. The fish from southern populations were deeper bodied while individuals from northern populations were more slender. Inland individuals were more streamlined while coastal individuals were of deeper body. The partial Mantel test predicts that the potential mechanism underlining the intraspecies morphological diversification along climate gradients is primarily the divergent selection pressures among different environments, while genetic variation had less contribution to morphological differentiation. The formation of the Nanling Mountain Range could drive genetic differentiation between Beihai population and those from Yangzi River Basin. The present results highlight strong selective pressures of climate on widespread species and enrich morphological differentiation basis of acclimation for species with high habitat suitability and invasive potential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.