Abstract

Sea cucumber (Stichopus japonicus) is a commercially valuable species in Korea. We examined the genetic characteristics of sea cucumber populations in Korea using microsatellite markers. A total of 144 sea cucumbers from five populations were typed for nine polymorphic microsatellite loci. A total of 139 different alleles were found over all loci and many alleles were unique. The average number of allele per locus ranged from 6 to 18.4. The average observed and expected heterozygosities ranged from 0.532 to 0.626 and from 0.719 to 0.789 respectively. All populations showed significant departure from Hardy–Weinberg equilibrium at almost all loci except one (Psj2409). This deviation was in the direction of heterozygote deficit. A phylogenetic tree revealed two distinct clusters. One cluster was formed by the eastern sea population. A second cluster consisted of the subpopulations of the western and southern sea populations. The eastern sea population showed genetic differences such as a larger number of alleles per locus, a larger number of unique alleles and a smaller number of the most common alleles, suggesting a higher genetic diversity in this population. These results provide basic information on natural population genetic structure of S. japonicus in Korea.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.