Abstract

The relationships among 214 wild-living sika deer from five locations in Germany and two in Lower Austria were examined using mitochondrial DNA (mtDNA) control region sequence. A total of 18 haplotypes are grouped consistently into two major divergent clades, A and B, which differ by a mean of 8.4% sequence divergence. Recently introduced sika deer showed a complex pattern of population structuring, which probably results from historical vicariance in at least two unknown source populations from southeastern Asia (as previously described by morphological and mtDNA findings), and subsequent population admixture as a result of human-mediated restocking. A strong genetic differentiation among populations was indicated by a global ΦST value of 0.78 reflecting mainly the differential distribution of clades A and B haplotypes. There was no association between related haplotypes and their distribution among local populations. These indicate that genealogy is a better predictor of the genetic affinity among most sika deer populations than their present-day locations. The abundant mitochondrial divergence we observed, may reflect a subspecies differentiation and could be associated with phenotypic differences among the introduced sika deer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call