Abstract

Inferring phylogeographic patterns of macroalgal species is essential for understanding the population structure and for the conservation of macroalgal species. In this study, the phylogeographic patterns of two co-distributed macroalgal species along the coast of Korea and Japan, Pachymeniopsis lanceolata and Pachymeniopsis elliptica, were analyzed. Pachymeniopsis lanceolata (215 specimens from 36 sites) and P. elliptica (138 specimens from 24 sites), using the plastid rbcL gene, are characterized by fifteen and six haplotypes, respectively. Mitochondrial COI-5P gene sequences revealed a low variation for both species. An analysis of molecular variance (AMOVA), pairwise FST comparisons, and haplotype networks based on the rbcL data suggest a weak genetic differentiation of both species. The shared haplotypes (P. lanceolata: LR01; P. elliptica: ER01) found in the entire sampling range indicate that these two Pachymeniopsis species can disperse over long distances along the coast of Korea and Japan. Despite the similar phylogeographic pattern, our results suggest that P. lanceolata has a higher genetic diversity, with a wider distribution along the Korean Peninsula than P. elliptica. Moreover, it is adapted to low sea surface temperatures and survived in more of the available habitats during periods of climatic change, whereas P. elliptica is less adaptable and more susceptible to environmental disturbance. This phylogeographic study provides a rationale for the conservation of the wild Pachymeniopsis population.

Highlights

  • Published: 21 July 2021The climate change during the Late Pleistocene glaciation has impacted the current distribution of marine populations [1,2,3]

  • The present study indicated generally similar phylogeographical patterns between P. lanceolata and P. elliptica based on a low genetic diversity and distribution, the two species displayed certain important differences in terms of genetic diversity, distribution, and genetic structures

  • Our results were discussed based on the results of the rbcL gene, which presented an interesting population structure for two Pachymeniopsis species, it is known to a conserved gene [49]

Read more

Summary

Introduction

The climate change during the Late Pleistocene glaciation has impacted the current distribution of marine populations [1,2,3]. Temperate species have responded to fluctuations between glacial and interglacial periods with range contractions and expansions [4]. Some lineages have been able to survive in refugia and expand northward as temperatures increased [5,6]. These refugia, with long-term population survival, often display a high genetic diversity and a unique gene variation [6]. Ocean warming driven by global climate change has led to a shift in geographic ranges toward higher latitude environments for many marine species [3]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call