Abstract

BackgroundHill pigeons (Columba rupestris) are close to local extinction (ca. less than 100 individuals) in South Korea where a variety of conservation management procedures are urgently required.ObjectiveThis study was aimed at determining the conservation direction of captive propagation and reintroduction of hill pigeons using genetic information based on mitochondrial DNA. We also evaluated the extent of hybridization between hill pigeons and cohabiting domestic pigeons.MethodsWe used 51 blood samples of hill pigeons from Goheung (GH), Gurye (GR), and Uiryeong (UR), and domestic pigeons cohabiting with hill pigeon populations. Genetic diversity, pairwise Fst, analysis of molecular variance, and haplotype network analysis were used to examine the genetic structure of hill pigeons.ResultsHill pigeons that inhabited South Korea were not genetically distinct from Mongolian and Russian populations and showed relatively low genetic diversity compared with other endangered species in Columbidae. The GR population that exhibited the largest population size showed lower genetic diversity, compared to the other populations, although the pairwise Fst values of the three populations indicated low genetic differentiation. The GH and GR populations were confirmed to lack hybridization, relatively, whereas the UR population was found to exhibit some degrees of hybridization.ConclusionTo conserve hill pigeons with low genetic diversity and differentiation in South Korea, the conservation process of captive propagation and reintroduction may require artificial gene flows among genetically verified populations in captivity and wildness. The introduction of foreign individuals from surrounding countries is also considered an alternative strategy for maintaining genetic diversity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call