Abstract

Antigenic diversity is a major concern in malaria vaccine development that requires to be considered in developing a malaria vaccine. Plasmodium falciparum thrombospondin-related adhesive protein (PfTRAP) is a leading malaria vaccine candidate antigen. In the current study, we investigated the level of genetic diversity and natural selection of pftrap sequences in P. falciparum isolates from Iran (n = 47). The gene diversity of Iranian pftrap sequences was also compared to available global pftrap sequences deposited in the GenBank or PlasmoDB databases (n = 220). Comparison of Iranian PfTRAP sequences with T9/96 reference sequence showed the presence of 35 amino acid changes in 32 positions and a limited variation in repeat sequences, leading to 13 distinct haplotypes. The overall nucleotide diversity (π) for the ectodomain of Iranian pftrap sequences was 0.00444 ± 0.00043, with the highest diversity in Domain IV. Alignment comparison of global PfTRAP sequences with T9/96 reference sequence indicated 96 amino acid replacements as well as extensive variable repeat sequences (9–23 repeats), which led to 192 haplotypes. Among the global isolates, the lowest nucleotide diversity was detected in French Guianan (0.00428 ± 0.00163) and Iranian (0.00444 ± 0.00043) pftrap sequences, and the most variation was observed in domains II and IV in all populations. The dN-dS value displayed the evidence of positive selection due to recombination and immune system pressure. The Fst analysis revealed a gene flow between African populations; however, genetic differentiation observed between Iranian and other populations probably was due to gene flow barriers. Both conserved and variable epitopes were predicted in B- and T-cell epitopes of PfTRAP antigen. The obtained results from this study could be helpful for developing a PfTRAP-based malaria vaccine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call