Abstract
How to determine the spatial distribution and population dynamics of animals are some of the key questions in ecology. These two have been coupled before, but there is no general method for determining spatial distributions based on instantanous behavior coupled with population dynamics. We propose modeling interacting populations with instantaneous habitat choice through mean-field games. By using the framework of variational inequalities, we are able to determine existence and uniqueness for habitat distributions of interacting populations, in both continuous and discrete habitats. With some additional restrictions, we are also able to show existence and uniqueness of fixed-points of the population dynamics along with spatial distributions. We illustrate our theoretical results by studying a Rosenzweig–MacArthur model where predators and consumers inhabit a continuous habitat. This study is conducted both theoretically and numerically. Analyzing the emergent dynamics is possible as viewing the system from the vantage point of variational inequalities allows for applying efficient numerical methods. The generality of our theoretical approach opens up for studying complex ecosystems, e.g. the impact of enrichment on spatial distributions in marine ecosystems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.