Abstract

The extinction time of an isolated population can be exponentially reduced by a periodic modulation of its environment. We investigate this effect using, as an example, a stochastic branching-annihilation process with a time-dependent branching rate. The population extinction is treated in eikonal approximation, where it is described as an instanton trajectory of a proper reaction Hamiltonian. The modulation of the environment perturbs this trajectory and synchronizes it with the modulation phase. We calculate the corresponding change in the action along the instanton using perturbation techniques supported by numerical calculations. The techniques include a first-order theory with respect to the modulation amplitude, a second-order theory in the spirit of the Kapitsa pendulum effect, and adiabatic theory valid for low modulation frequencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.