Abstract

There is growing evidence that climate change causes an increase in variation in conditions for plant and animal populations. This increase in variation, e.g. amplified inter-annual variability in temperature and rainfall has population dynamical consequences because it raises the variation in vital demographic rates (survival, reproduction) in these populations. In turn, this amplified environmental variability enlarges population extinction risk. This paper demonstrates that currently used nature conservation policies, principles, and generic and specific design criteria have to be adapted to these new insights. A simulation shows that an increase in variation in vital demographic rates can be compensated for by increasing patch size. A small, short-lived bird species like a warbler that is highly sensitive to environmental fluctuations needs more area for compensation than a large, long-lived bird species like a Bittern. We explore the conservation problems that would arise if patches or reserve sizes would need to be increased, e.g. doubled, in order to compensate for increase in environmental variability. This issue has serious consequences for nature policy when targets are not met, and asks for new design criteria.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.