Abstract
Ecological processes that differentiate and maintain intertidal populations of mussels, Perna canaliculus, were studied within three sites at Ninety Mile Beach, northern New Zealand. At these three sites (Scott Point, The Bluff and Tonatona Beach), the dynamics of larval availability, primary and secondary settlement, recruitment and mortality rates were investigated at various spatial and temporal scales. (1) Mussel concentrations in seawater were variable with respect to study site and time of year, with highest abundances at the northernmost population (Scott Point) and lowest concentrations at the middle population (The Bluff). In seawater at all three sites, small mussels (< 0.25 mm in shell length) were more abundant in August 2000, while larger mussels (> 0.5 mm in shell length) were more abundant in March 2001. (2) Primary and secondary settlement patterns were investigated during short-term (daily) and long-term (monthly) settlement experiments, within quadrats that were cleared of all mussels in both the mussel bed and in adjacent algal band habitats. At all sites, primary settlement (< 0.5 mm in shell length) was high within the algal band habitat in August 1999, 2000 and 2001. Conversely, secondary settlement (> 2.0 mm in shell length) was high within cleared areas in the mussel beds in November–March 1999–2000 and 2000–2001. Abundance of mussels settling on artificial substrates placed in the intertidal did not differ greatly from comparable areas of natural substrates (bare rock or algae within cleared quadrats). (3) Recruitment and mortality rates were recorded during monthly surveys of the adult populations. Within three mussel size classes (< 24, 25–74 and > 75 mm in shell length), peak recruitment coincided with high mortality in August of the 2 years studied. However, the most dramatic turnover of the population was observed at Scott Point in both years, following a spawning event. In adjacent waters at Scott Point, large accumulations of drift algae covered (up to 100% cover) with juvenile mussels may deplete food supplies usually delivered to intertidal adult mussels, causing their demise. Mats of adult mussels were observed “peeling-off” from the rocky shore at this time of the year, making space available to the new recruits. Where nearshore algal accumulations were moderate to low, only moderate to low mussel turnovers were observed (e.g. Tonatona Beach and The Bluff).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Experimental Marine Biology and Ecology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.