Abstract

Ecological phenomena vary over space and time and interpretation of these processes also varies depending on the measurement scale. As the spatial scale of observation increases and decreases, changes in population abundance will likely exhibit alternating patterns of asynchrony and synchrony. While the study of how and why population dynamics change with spatial scale of measurement is intrinsically interesting, most population ecologists seek to study mechanisms of population change on a discrete study area. Our study develops methods that population ecologists can use to determine spatially appropriate sampling designs, and demonstrates how such spatial scales can be determined for 25 species of songbirds using longterm data from the boreal mixedwood forest of Alberta, Canada. To determine minimum scales of synchrony in population dynamics, we calculated the average correlation of changes in population abundance over time across different numbers of fixed-radius point-count samples. We then used a randomization test to remove the effect of number of replicates from the determination of appropriate spatial scale. The maximum extent of synchrony was estimated as the distance where population dynamics were no longer correlated. Estimates of the minimum scale of synchrony differed between species, ranging from 3.1 to 18.6 ha. The maximum scale of synchrony was estimated to be greater than or equal to 8 km for 14 of the 25 species examined, and to be greater than or equal to 70 km for Tennessee Warbler (Vermivora peregrina). Maximum spatial extents were significantly correlated with body mass and territory size.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call